TurmericCurcumin.com

Curcumin
 
Skeletal formula
Enol form
Skeletal formula
Keto form
Ball-and-stick model
Ball-and-stick model
Identifiers
CAS number 458-37-7 YesY
PubChem 969516
ChemSpider 839564 YesY
UNII IT942ZTH98 YesY
ChEBI CHEBI:3962 YesY
ChEMBL CHEMBL116438 N
   
 
Properties
Molecular formula C21H20O6
Molar mass 368.38 g mol−1
Appearance Bright yellow-orange powder
Melting point 183 °C, 456 K, 361 °F
 
 

General
Systematic name (1E,6E)-1,7-bis(4-hydroxy-
3-methoxyphenyl)-1,6-
heptadiene-3,5-dione
Other names curcumin
diferuloylmethane
C.I. 75300
Natural Yellow 3
Molecular formula C21H20O6
Molar mass 368.38 g/mol

Curcumin is the active ingredient of the Indian curry spice turmeric. It is a polyphenol with a molecular formula C21H20O6. Curcumin can exist in at least two tautomeric forms, keto and enol. The keto form is preferred in solid phase and the enol form in solution.

Curcumin can be used for boron quantification in the so-called curcumin method. It reacts with boric acid forming a red colored compound, known as rosocyanine.

Curcumin is known for its antitumor, antioxidant, anti-amyloid and anti-inflammatory properties. Anti-inflammatory action may be due to leukotriene inhibition.

Curcumin acts as a free radical scavenger and antioxidant, inhibiting lipid peroxidation and oxidative DNA damage. Curcuminoids induce glutathione S-transferase and are potent inhibitors of cytochrome P450.

For the last few decades, extensive work has been done to establish the biological activities and pharmacological actions of curcumin. Its anticancer effects stem from its ability to induce apoptosis in cancer cells without cytotoxic effects on healthy cells. Curcumin can interfere with the activity of the transcription factor NF-κB ( NF-kB ), which is often highly overexpressed in many cancer cells, according to a talk given by Dr. Dennis Liotta at Davidson College in January 2006.

A 2004 UCLA-Veterans Affairs study involving genetically altered mice suggests that curcumin might inhibit the accumulation of destructive beta-amyloid in the brains of Alzheimer's disease patients and also break up existing plaques associated with the disease. It was published that curcumin inhibits cyclooxygenase-2 (COX-2) as well as lipoxygenase (LOX), two enzymes involved in inflammation.

Order curcumin at www.turmeric-curcumin.com

Curcumin is the principal curcuminoid of the popular Indian spice turmeric, which is a member of the ginger family (Zingiberaceae). Turmeric's other two curcuminoids are desmethoxycurcumin and bis-desmethoxycurcumin. The curcuminoids are natural phenols that are responsible for the yellow color of turmeric. Curcumin can exist in several tautomeric forms, including a 1,3-diketo form and two equivalent enol forms. The enol form is more energetically stable in the solid phase and in solution.[1]

Curcumin can be used for boron quantification in the curcumin method. It reacts with boric acid to form a red-colored compound, rosocyanine.

Curcumin is brightly yellow colored and may be used as a food coloring. As a food additive, its E number is E100.[2]

Chemistry

Curcumin incorporates several functional groups. The aromatic ring systems, which are phenols, are connected by two α,β-unsaturated carbonyl groups. The diketones form stable enols and are readily deprotonated to form enolates; the α,β-unsaturated carbonyl group is a good Michael acceptor and undergoes nucleophilic addition. The structure was first identified in 1910 by J. Miłobędzka, Stanisław Kostanecki and Wiktor Lampe.[3]

Curcumin is used as an indicator for boron.[4]

Biosynthesis

The biosynthetic route of curcumin has proven to be very difficult for researchers to determine. In 1973 Roughly and Whiting proposed two mechanisms for curcumin biosynthesis. The first mechanism involved a chain extension reaction by cinnamic acid and 5 malonyl-CoA molecules that eventually arylized into a curcuminoid. The second mechanism involved two cinnamate units being coupled together by malonyl-CoA. Both mechanisms use cinnamic acid as their starting point, which is derived from the amino acid phenylalanine. This is noteworthy because plant biosyntheses employing cinnamic acid as a starting point are rare compared to the more common use of p-coumaric acid.[5] Only a few identified compounds, such as anigorufone and pinosylvin, use cinnamic acid as their start molecule.[6][7] An experimentally backed route was not presented until 2008. This proposed biosynthetic route follows both the first and second mechanisms suggested by Roughley and Whiting. However, the labeling data supported the first mechanism model in which 5 malonyl-CoA molecules react with cinnamic acid to form curcumin. However, the sequencing in which the functional groups, the alcohol and the methoxy, introduce themselves onto the curcuminoid seems to support more strongly the second proposed mechanism.[5] Therefore, it was concluded the second pathway proposed by Roughly and Whiting was correct.

 

Potential medical uses

Although many preclinical studies suggest curcumin may be useful for the prevention and treatment of several diseases, the effectiveness of curcumin has not yet been demonstrated in randomized, placebo-controlled, double-blind clinical trials.[8]

A daily dose of 2 grams of Curcuma domestica extract was found to provide pain relief that was equivalent to ibuprofen for the relief of pain associated with osteoarthritis of the knee.[9] An extensive survey of the literature shows a number of other potential uses and that daily doses over a 3 month period of up to 12 grams proved safe.[10] Some commercial capsules of curcumin contain piperine, a compound found in pepper which aids absorption of curcumin into the blood stream. However, as curcuma is known to inhibit blood clotting, it should be avoided for a two week period prior to major surgery and not used in conjunction with blood thinners such as warfarin and Plavix. It is also known to aggravate gallstone problems.[11]

Research

Turmeric has been used historically as a component of Indian Ayurvedic medicine. Research in the latter half of the 20th century identified curcumin as the agent responsible for most of the biological activity of turmeric.[12] In vitro and animal studies have suggested a wide range of potential therapeutic or preventive effects associated with curcumin. At present, these effects have not been confirmed in humans. As of 2008, numerous clinical trials in humans were underway, studying the effect of curcumin on various diseases, including multiple myeloma, pancreatic cancer, myelodysplastic syndromes, colon cancer, psoriasis, and Alzheimer's disease.[13]

In both in vitro and animal studies, curcumin has shown antitumor,[14][15][16] antioxidant, antiarthritic, antiamyloid, anti-ischemic,[17] and anti-inflammatory properties.[18]

Anti-inflammatory properties may be due to inhibition of eicosanoid biosynthesis.[19]

There is a study that demonstrated that curcumin may be an alternative antimicrobial agent against fatal bacterial infections including Vibrio vulnificus infection. In the study, curcumin protected mice from V. vulnificus-induced septicemia.[20]

In HIV, it appears to act by interfering Curcumin P300/CREB-binding protein (CBP).

A study found it hepatoprotective in combination with Absinthium in rats.[21]

A study found that low concentrations of Curcumin interfere with Herpes simplex virus-1 (HSV-1) replication. It inhibited the recruitment of RNA polymerase II to viral DNA, thus inhibiting its transcription. This effect was independent of the effect on histone acetyltransferase activities of p300/CBP.[22]

A study found that curcumin is significantly associated with protection from infection by HSV-2 in animal models of intravaginal infections.[23]

A study found that curcumin acts as a free radical scavenger and antioxidant, inhibiting lipid peroxidation and oxidative DNA damage, protecting against lead neurotoxicity, in rats.[24]

Curcuminoids induce glutathione S-transferase and are potent inhibitors of cytochrome P450

Curcumin was shown to be effective in protecting against toxicity and spatial memory impairment induced by amyloid β-protein infusion in a rat model.[25]

A study using a transgenic animal model indicated that curcumin diminished plaque burden and overall inflammation, but it also increased plaque-associated inflammatory cells suggesting enhanced clearance.[26]

A study found that Curcumin shrank the size of plaques and reduced neurite dystrophy in an Alzheimer mouse model.[27]

A study found Curcumin to have a synergistic effect with fish oil to protect against cognitive deficits in a transgenic rodent model.[28]

However, the results of studies in rodents may not translate to humans. In humans, unlike rats, curcumin is extensively metabolized to the glucuronidated form, which does not penetrate the blood–brain barrier and is therefore unable to reach brain tissues.

Numerous studies have demonstrated that curcumin has a positive effect on neurogenesis in the hippocampus and increases the levels of brain-derived neurotrophic factor (BDNF) in rats.[29][30][31]

A curcumin pyrazole derivative identified by high throughput screening was found to improve memory and was broadly neuroprotective, stimulating BDNF in vitro and in vivo.[32][33] The compound was found to be protective in animal models of brain trauma and stroke.[34][35]

Order curcumin at www.turmeric-curcumin.com

Anticarcinogenic effects

Its potential anticancer effects stem from its ability to induce apoptosis in cancer cells without cytotoxic effects on healthy cells. Curcumin can interfere with the activity of the transcription factor NF-κB, which has been linked to a number of inflammatory diseases such as cancer.[36]

A 2009 study suggested curcumin may inhibit mTOR complex I via a novel mechanism.[37]

Another 2009 study on curcumin effects on cancer states it "modulates growth of tumor cells through regulation of multiple cell signaling pathways including cell proliferation pathway (cyclin D1, c-myc), cell survival pathway (Bcl-2, Bcl-xL, cFLIP, XIAP, c-IAP1), caspase activation pathway (caspase-8, 3, 9), tumor suppressor pathway (p53, p21) death receptor pathway (DR4, DR5), mitochondrial pathways, and protein kinase pathway (JNK, Akt, and AMPK)".[38]

An in vitro study in a human glioblastoma cell line reported that curcumin effectively inhibits tumor cell proliferation, as well as migration and invasion, and that these effects may be mediated through interference with the STAT3 signaling pathway.[39]

When 0.2% curcumin is added to diet given to rats or mice previously given a carcinogen, it significantly reduces colon carcinogenesis.[40]

In a study curcumin has been shown in vitro to have phyto-estrogenic activity that might contribute to activity against breast cancer.[41]

In immunodeficient mice with breast cancer, curcumin inhibited the formation of lung metastases [42] probably through the NF-κB dependent regulation of protumorigenic inflammatory cytokines.[43]

A study found that curcumin might be potentially useful in some kidney diseases by reducing lipopolysaccharide-induced renal inflammation.[44]

 

  1. ^ Kolev, Tsonko M.; Velcheva, Evelina A.; Stamboliyska, Bistra A.; Spiteller, Michael (2005). "DFT and experimental studies of the structure and vibrational spectra of curcumin". International Journal of Quantum Chemistry 102 (6): 1069–79. doi:10.1002/qua.20469. 
  2. ^ Food Standards Australia New Zealand. "Food Additives- Numerical List". http://www.foodstandards.gov.au/newsroom/publications/choosingtherightstuff/foodadditivesnumeric1680.cfm. Retrieved 2009-12-02. 
  3. ^ Miłobȩdzka, J.; v. Kostanecki, St.; Lampe, V. (1910). "Zur Kenntnis des Curcumins". Berichte der deutschen chemischen Gesellschaft 43 (2): 2163–70. doi:10.1002/cber.191004302168. 
  4. ^ "EPA Method 212.3: Boron (Colorimetric, Curcumin)". http://www.caslab.com/EPA-Methods/PDF/EPA-Method-2123.pdf. 
  5. ^ a b c Kita, Tomoko; Imai, Shinsuke; Sawada, Hiroshi; Kumagai, Hidehiko; Seto, Haruo (2008). "The Biosynthetic Pathway of Curcuminoid in Turmeric (Curcuma longa) as Revealed by 13C-Labeled Precursors". Bioscience, Biotechnology, and Biochemistry 72 (7): 1789. doi:10.1271/bbb.80075. 
  6. ^ Schmitt, Bettina; Hölscher, Dirk; Schneider, Bernd (2000). "Variability of phenylpropanoid precursors in the biosynthesis of phenylphenalenones in Anigozanthos preissii". Phytochemistry 53 (3): 331–7. doi:10.1016/S0031-9422(99)00544-0. PMID 10703053. 
  7. ^ Gehlert, R.; Schoeppner, A.; Kindl, H. (1990). "Stilbene Synthase from Seedlings of Pinus sylvestris: Purification and Induction in Response to Fungal Infection" (pdf). Molecular Plant-Microbe Interactions 3 (6): 444–449. doi:10.1094/MPMI-3-444. http://www.apsnet.org/publications/mpmi/backissues/Documents/1990Articles/Microbe03_444.pdf. 
  8. ^ Mancuso, C.; Barone, E. (2009). "Curcumin in clinical practice: myth or reality?". Trends in Pharmacological Science 30 (7): 333–334. doi:10.1016/j.tips.2009.04.004. PMID 19523696. 
  9. ^ Kuptniratsaikul, Vilai; Thanakhumtorn, Sunee; Chinswangwatanakul, Pornsiri; Wattanamongkonsil, Luksamee; Thamlikitkul, Visanu (2009). "Efficacy and Safety ofCurcuma domesticaExtracts in Patients with Knee Osteoarthritis". The Journal of Alternative and Complementary Medicine 15 (8): 891–7. doi:10.1089/acm.2008.0186. PMID 19678780. "Curcuma domestica extracts seem to be similarly efficacious and safe as ibuprofen for the treatment of knee Osteoarthritis." 
  10. ^ Goel, Ajay; Kunnumakkara, Ajaikumar B.; Aggarwal, Bharat B. (2008). "Curcumin as "Curecumin": From kitchen to clinic". Biochemical Pharmacology 75 (4): 787–809. doi:10.1016/j.bcp.2007.08.016. PMID 17900536. "Pilot phase I clinical trials have shown curcumin to be safe even when consumed at a daily dose of 12g for 3 months." 
  11. ^ O'Connor, Anahad (October 19, 2011). "The Doctor’s Remedy: Turmeric for Joint Pain". The New York Times. http://well.blogs.nytimes.com/2011/10/19/the-doctors-remedy-turmeric-for-joint-pain/. Retrieved 2011-10-20. 
  12. ^ Aggarwal, Bharat B.; Sundaram, Chitra; Malani, Nikita; Ichikawa, Haruyo (2007). "CURCUMIN: THE INDIAN SOLID GOLD". The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY. 595. pp. 1. doi:10.1007/978-0-387-46401-5_1. ISBN 978-0-387-46400-8. 
  13. ^ Hatcher, H.; Planalp, R.; Cho, J.; Torti, F. M.; Torti, S. V. (2008). "Curcumin: From ancient medicine to current clinical trials". Cellular and Molecular Life Sciences 65 (11): 1631–52. doi:10.1007/s00018-008-7452-4. PMID 18324353. 
  14. ^ Ströfer, Mareike; Jelkmann, Wolfgang; Depping, Reinhard (2011). "Curcumin Decreases Survival of Hep3B Liver and MCF-7 Breast Cancer Cells". Strahlentherapie und Onkologie 187 (7): 393–400. doi:10.1007/s00066-011-2248-0. PMID 21713389. 
  15. ^ Aggarwal, Bharat B.; Shishodia, Shishir (2006). "Molecular targets of dietary agents for prevention and therapy of cancer". Biochemical Pharmacology 71 (10): 1397–421. doi:10.1016/j.bcp.2006.02.009. PMID 16563357. 
  16. ^ Choi, H.; Chun, Y.-S.; Kim, S.-W.; Kim, M.-S.; Park, J.-W. (2006). "Curcumin Inhibits Hypoxia-Inducible Factor-1 by Degrading Aryl Hydrocarbon Receptor Nuclear Translocator: A Mechanism of Tumor Growth Inhibition". Molecular Pharmacology 70 (5): 1664–71. doi:10.1124/mol.106.025817. PMID 16880289. 
  17. ^ Shukla, Pradeep K.; Khanna, Vinay K.; Ali, Mohd. M.; Khan, Mohd. Y.; Srimal, Rikhab C. (2008). "Anti-ischemic Effect of Curcumin in Rat Brain". Neurochemical Research 33 (6): 1036–43. doi:10.1007/s11064-007-9547-y. PMID 18204970. 
  18. ^ Stix, G. (February 2007). "Spice Healer". Scientific American 296 (2): 66. doi:10.1038/scientificamerican0207-66. http://sciam.com/article.cfm?chanID=sa006&articleID=131CED4F-E7F2-99DF-3C84BB412D1D3B51&pageNumber=1&catID=2. 
  19. ^ Srivastava, K.C.; Bordia, A.; Verma, S.K. (1995). "Curcumin, a major component of food spice turmeric (Curcuma longa) inhibits aggregation and alters eicosanoid metabolism in human blood platelets". Prostaglandins, Leukotrienes and Essential Fatty Acids 52 (4): 223. doi:10.1016/0952-3278(95)90040-3. 
  20. ^ Na, HS; Cha, MH; Oh, DR; Cho, CW; Rhee, JH; Kim, YR (2011). "Protective mechanism of curcumin against Vibrio vulnificus infection". FEMS immunology and medical microbiology 63 (3): 355–62. doi:10.1111/j.1574-695X.2011.00855.x. PMID 22092562. 
  21. ^ Marotta, F; Shield, YR; Bamba, T; Naito, Y; Minelli, E; Yoshioka, M (2003). "Hepatoprotective effect of a curcumin/absinthium compound in experimental severe liver injury". Chinese Journal of Digestive Diseases 4 (3): 122. doi:10.1046/j.1443-9573.2003.00133.x. 
  22. ^ Kutluay, Sebla B.; Doroghazi, James; Roemer, Martha E.; Triezenberg, Steven J. (2008). "Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity". Virology 373 (2): 239–47. doi:10.1016/j.virol.2007.11.028. PMC 2668156. PMID 18191976. //www.ncbi.nlm.nih.gov/pmc/articles/PMC2668156/. 
  23. ^ Bourne, Krystyn Z.; Bourne, Nigel; Reising, Shirley F.; Stanberry, Lawrence R. (1999). "Plant products as topical microbicide candidates: Assessment of in vitro and in vivo activity against herpes simplex virus type 2". Antiviral Research 42 (3): 219–26. doi:10.1016/S0166-3542(99)00020-0. PMID 10443534. 
  24. ^ Shukla, Pradeep K; Khanna, Vinay K; Khan, Mohd Y; Srimal, Rikhab C (2003). "Protective effect of curcumin against lead neurotoxicity in rat". Human & Experimental Toxicology 22 (12): 653. doi:10.1191/0960327103ht411oa. 
  25. ^ Frautschy, S; Hu, W; Kim, P; Miller, SA; Chu, T; Harris-White, ME; Cole, GM (2001). "Phenolic anti-inflammatory antioxidant reversal of Aβ-induced cognitive deficits and neuropathology". Neurobiology of Aging 22 (6): 993–1005. doi:10.1016/S0197-4580(01)00300-1. PMID 11755008. 
  26. ^ Chu, Giselle P.; Chu, Teresa; Yang, Fusheng; Beech, Walter; Frautschy, Sally A.; Cole, Greg M. (2001). "The Curry Spice Curcumin Reduces Oxidative Damage and Amyloid Pathology in an Alzheimer Transgenic Mouse". The Journal of Neuroscience 21 (21): 8370–7. PMID 11606625. 
  27. ^ Garcia-Alloza, M.; Borrelli, L. A.; Rozkalne, A.; Hyman, B. T.; Bacskai, B. J. (2007). "Curcumin labels amyloid pathology in�vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model". Journal of Neurochemistry 102 (4): 1095–104. doi:10.1111/j.1471-4159.2007.04613.x. PMID 17472706. 
  28. ^ Ma, Q.-L.; Yang, F.; Rosario, E. R.; Ubeda, O. J.; Beech, W.; Gant, D. J.; Chen, P. P.; Hudspeth, B. et al. (2009). " -Amyloid Oligomers Induce Phosphorylation of Tau and Inactivation of Insulin Receptor Substrate via c-Jun N-Terminal Kinase Signaling: Suppression by Omega-3 Fatty Acids and Curcumin". Journal of Neuroscience 29 (28): 9078–89. doi:10.1523/JNEUROSCI.1071-09.2009. PMID 19605645. 
  29. ^ Xu, Ying; Ku, Baoshan; Cui, Li; Li, Xuejun; Barish, Philip A.; Foster, Thomas C.; Ogle, William O. (2007). "Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats". Brain Research 1162: 9–18. doi:10.1016/j.brainres.2007.05.071. PMID 17617388. 
  30. ^ Wu, Aiguo; Ying, Zhe; Gomez-Pinilla, Fernando (2006). "Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition". Experimental Neurology 197 (2): 309–17. doi:10.1016/j.expneurol.2005.09.004. PMID 16364299. 
  31. ^ Bala, Kiran; Tripathy, B. C.; Sharma, Deepak (2006). "Neuroprotective and Anti-ageing Effects of Curcumin in Aged Rat Brain Regions". Biogerontology 7 (2): 81–9. doi:10.1007/s10522-006-6495-x. PMID 16802111. 
  32. ^ Maher, Pamela; Akaishi, Tatsuhiro; Schubert, David; Abe, Kazuho (2010). "A pyrazole derivative of curcumin enhances memory". Neurobiology of Aging 31 (4): 706–9. doi:10.1016/j.neurobiolaging.2008.05.020. PMID 18639368. 
  33. ^ Liu, Y.; Dargusch, R.; Maher, P.; Schubert, D. (2008). "A broadly neuroprotective derivative of curcumin". Journal of Neurochemistry 105 (4): 1336–1345. doi:10.1111/j.1471-4159.2008.05236.x. PMID 18208543. 
  34. ^ Wu, A.; Ying, Z.; Schubert, D.; Gomez-Pinilla, F. (2011). "Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma". Neurorehabilitation and Neural Repair 25 (4): 332–342. doi:10.1177/1545968310397706. PMC 3258099. PMID 21343524. //www.ncbi.nlm.nih.gov/pmc/articles/PMC3258099/. 
  35. ^ Lapchak, P.; Schubert, D. R.; Maher, P. A. (2011). "Delayed Treatment with a Novel Neurotrophic Compound Reduces Behavioral Deficits in Rabbit Ischemic Stroke". Journal of Neurochemistry 116 (1): 122–131. doi:10.1111/j.1471-4159.2010.07090.x. PMC 3004475. PMID 21054387. //www.ncbi.nlm.nih.gov/pmc/articles/PMC3004475/. 
  36. ^ Aggarwal, B. B.; Shishodia, S. (2004). "Suppression of the Nuclear Factor-κB Activation Pathway by Spice-Derived Phytochemicals: Reasoning for Seasoning". Annals of the New York Academy of Sciences 1030: 434–441. doi:10.1196/annals.1329.054. PMID 15659827. 
  37. ^ Beevers, C. S.; Chen, L.; Liu, L.; Luo, Y.; Webster, N. J. G.; Huang, S. (2009). "Curcumin disrupts the Mammalian target of rapamycin-raptor complex". Cancer Research 69 (3): 1000–1008. doi:10.1158/0008-5472.CAN-08-2367. PMID 19176385. 
  38. ^ Ravindran, J.; Prasad, S.; Aggarwal, B. B. (2009). "Curcumin and Cancer Cells: How Many Ways Can Curry Kill Tumor Cells Selectively?". The AAPS Journal 11 (3): 495–510. doi:10.1208/s12248-009-9128-x. PMC 2758121. PMID 19590964. //www.ncbi.nlm.nih.gov/pmc/articles/PMC2758121/. 
  39. ^ Senft, C.; Polacin, M.; Priester, M.; Seifert, V.; Kögel, D.; Weissenberger, J. (2010). "The nontoxic natural compound Curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas". BMC Cancer 10: 491. doi:10.1186/1471-2407-10-491. PMC 2949804. PMID 20840775. //www.ncbi.nlm.nih.gov/pmc/articles/PMC2949804/. 
  40. ^ Data from sixteen scientific articles reported in the Chemoprevention Database
  41. ^ Bachmeier, B. E.; Mirisola, V.; Romeo, F.; Generoso, L.; Esposito, A.; Dell’Eva, R.; Blengio, F.; Killian, P. H.; Albini, A. (2010). "Reference profile correlation reveals estrogen-like trancriptional activity of Curcumin". Cell Physiology and Biochemistry 26 (3): 471–482. doi:10.1159/000320570. PMID 20798532. 
  42. ^ Bachmeier, B. E.; Nerlich, A.; Iancu, C.; Cilli, M.; Schleicher, E.; Vené, R.; Dell’Eva, R.; Jochum, M. et al. (2007). "The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice" (pdf). Cell Physiology and Biochemistry 19 (1–4): 137–152. doi:10.1159/000099202. PMID 17310108. http://content.karger.com/produktedb/produkte.asp?DOI=000099202&typ=pdf. 
  43. ^ Bachmeier, B. E.; Mohrenz, I. V.; Mirisola, V.; Schleicher, E.; Romeo, F.; Hohneke, C.; Jochum, M.; Nerlich, A. G. et al. (2008). "Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFκB". Carcinogenesis 29 (4): 779–789. doi:10.1093/carcin/bgm248. PMID 17999991. 
  44. ^ Zhong, F.; Chen, H.; Han, L.; Jin, Y.; Wang, W. (2011). "Curcumin attenuates lipopolysaccharide-induced renal inflammation". Biological and Pharmaceutical Bulletin 34 (2): 226–232. doi:10.1248/bpb.34.226. PMID 21415532. 
  45. ^ a b Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. (2007). "Bioavailability of curcumin: problems and promises". Molecular Pharmaceutics 4 (6): 807–818. doi:10.1021/mp700113r. PMID 17999464. 
  46. ^ Marczylo, T. H.; Verschoyle, R. D.; Cooke, D. N.; Morazzoni, P.; Steward, W. P.; Gescher, A. J. (2007). "Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine". Cancer Chemotherapy and Pharmacology 60 (2): 171–177. doi:10.1007/s00280-006-0355-x. PMID 17051370. 
  47. ^ Bachmeier BE, Iancu CM, Killian PH, Kronski E, Mirisola V, Angelini G, Jochum M, Nerlich AG,Pfeffer U. (2009). "Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells". Mol Cancer 8: 129–141. doi:10.1186/1476-4598-8-129. PMC 2804606. PMID 20030852. //www.ncbi.nlm.nih.gov/pmc/articles/PMC2804606/. 
  48. ^ Kawanishi, S.; Oikawa, S.; Murata, M. (2005). "Evaluation for safety of antioxidant chemopreventive agents". Antioxidants & Redox Signaling 7 (11–12): 1728–1739. doi:10.1089/ars.2005.7.1728. PMID 16356133. 
  49. ^ Moos, P. J.; Edes, K.; Mullally, J. E.; Fitzpatrick, F. A. (2004). "Curcumin impairs tumor suppressor p53 function in colon cancer cells". Carcinogenesis 25 (9): 1611–1617. doi:10.1093/carcin/bgh163. PMID 15090465. 
  50. ^ a b Burgos-Moron, E.; Calderón-Montańo, J. M.; Salvador, J.; Robles, A.; López-Lázaro, M. (2010). "The dark side of curcumin" (pdf). International Journal of Cancer 126 (7): 1771–1775. doi:10.1002/ijc.24967. PMID 19830693. http://onlinelibrary.wiley.com/doi/10.1002/ijc.24967/pdf. 
  51. ^ Dance-Barnes, S. T.; Kock, N. D.; Moore, J. E.; Lin, E. Y.; Mosley, L. J.; d'Agostino, R. B.; McCoy, T. P.; Townsend, A. J. et al. (2009). "Lung tumor promotion by curcumin". Carcinogenesis 30 (6): 1016–1023. doi:10.1093/carcin/bgp082. PMC 2691137. PMID 19359593. //www.ncbi.nlm.nih.gov/pmc/articles/PMC2691137/. 
  52. ^ López-Lázaro, M.; Kock, N. D.; Moore, J. E.; Lin, E. Y.; Mosley, L. J.; d'Agostino, R. B.; McCoy, T. P.; Townsend, A. J. et al. (2008). "Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent". Molecular Nutrition and Food Research 52 (Supplement 1): S103–S127. doi:10.1002/mnfr.200700238. PMID 18496811. 
  53. ^ Hsu, C. H.; Cheng, A. L. (2007). "Clinical studies with curcumin". Advances in Experimental Medicine and Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 595: 471–480. doi:10.1007/978-0-387-46401-5_21. ISBN 978-0-387-46400-8. PMID 17569225. 
  54. ^ Jiao, Y.; Wilkinson, J.; Di, X.; Wang, W.; Hatcher, H.; Kock, N. D.; d'Agostino, R.; Knovich, M. A. et al. (January 2009). "Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator". Blood 113 (2): 462–469. doi:10.1182/blood-2008-05-155952. PMC 2615657. PMID 18815282. //www.ncbi.nlm.nih.gov/pmc/articles/PMC2615657/. 
  55. ^ Vijayalaxmi (1980). "Genetic effects of turmeric and curcumin in mice and rats". Mutation Research 79 (2): 125–132. doi:10.1016/0165-1218(80)90080-4. PMID 7432370. 
  56. ^ Wu, J. Y.; Lin, C. Y.; Lin, T. W.; Ken, C. F.; Wen, Y. D. (2007). "Curcumin Affects Development of Zebrafish Embryo". Biol. Pharm. Bull 30 (7): 1336–1339. doi:10.1248/bpb.30.1336. PMID 17603177.

Order curcumin at www.turmeric-curcumin.com